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ABSTRACT

Considering redshifted 21-cm intensity mapping with the upcoming OWFA

whose field of view subtends ∼ 57◦ in the N-S direction, we present a for-

malism which relates the measured visibilities to the spherical harmonic co-

efficients of the sky signal. We use this to calculate window functions which

relate the two-visibility correlations i.e. the correlation between the visibilities

measured at two baselines and two frequencies, to different multipoles of the

multi-frequency angular power spectrum Cℓ(ν1, ν2). The formalism here is val-

idated using simulations. We also present approximate closed form analytical

expressions which can be used to calculate the window functions. Comparing

the widely adopted flat sky approximation, we find that its predictions match

those of our spherical harmonic formalism to within 16% across the entire

OWFA baseline range. The match improves at large baselines where we have

< 5% deviations.

Key words: Interferometric; cosmology: observations, diffuse radiation, large-

scale structure of Universe.

⋆ E-mail: suman05@phy.iitkgp.ernet.in

† E-mail: somnath@phy.iitkgp.ernet.in

c© 2018 The Authors

http://arxiv.org/abs/1804.00493v1


2 Chatterjee et al.

1 INTRODUCTION

Intensity mapping with neutral Hydrogen Hi 21-cm radiation is a promising tool to study

the large scale structures in the post-reionization Universe (Bharadwaj et al. 2001). The

redshifted Hi 21-cm observations hold the potential of measuring the Baryon Acoustic Os-

cillation (BAO) that is embedded in the power spectrum of Hi 21-cm intensity fluctuations

at all redshifts and the comoving scale of BAO can be used as a standard ruler to constrain

the evolution of the equation of state for dark energy (Wyithe et al. 2008; Chang et al.

2008; Seo et al. 2010; Masui et al. 2010). Further, a measurement of just the Hi 21-cm

power spectrum can also be used to constrain the cosmological parameters (Bharadwaj et al.

2009; Visbal et al. 2009). The higher order statistics such as the Hi 21-cm bispectrum holds

the prospect of quantifying the non-Gaussianities in the Hi 21-cm signal (Ali et al. 2005;

Hazra & Sarkar 2012). Using the Hi signal in cross-correlation with the WiggleZ galaxy sur-

vey data, the Green Bank Telescope (GBT) has made the first detection of the Hi signal in

emission at z ≈ 0.8 (Chang et al. 2010).

A number of post-reionization experiments are either being planned or are ongoing

at present. The Giant Meterwave Radio telescope (GMRT; Swarup et al. 1991) is sensi-

tive to the cosmological Hi signal from a range of redshifts in the post-reionization era

(Bharadwaj & Pandey 2003; Bharadwaj & Ali 2005). The upgraded GMRT (uGMRT; Gupta et al.

2017) is expected to have a larger bandwidth for which the prospects of a detection are

investigated in Chatterjee et. al. 2018(in preparation). The Canadian Hydrogen Intensity

Mapping Experiment (CHIME; Bandura et al. 2014) and the Hydrogen Intensity and Real-

time Analysis eXperiment (HIRAX; Newburgh et al. 2016) aims to measure the BAO in the

redshift range 0.8−2.5. Future experiments, like Tianlai (Chen 2012, 2015) and SKA1-MID

(Bull et al. 2015) also aim to measure the Hi 21-cm signal from the post-reionization era.

The Ooty Wide Field Array (OWFA; Subrahmanya et al. 2017a) is an upgraded version

of the Ooty Radio Telescope (ORT, Swarup et al. 1971). The upgrade will result in two

concurrently functioning modes named Phase I (PI) and Phase II (PII). The primary science

goals of OWFA have been outlined in Subrahmanya et al. (2017b), and the measurement

of the z = 3.35 post-reionization Hi 21-cm power spectrum is one of its major objectives

(Ali & Bharadwaj 2014). It has been predicted that a 5σ detection of the amplitude of the

Hi 21-cm power spectrum is possible with ∼ 150 hrs of observation (Bharadwaj et al. 2015).

Further, Sarkar et al. (2018) have predicted that a ∼ 5σ measurement of the binned Hi 21-
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cm power spectrum is possible in the k-range 0.05Mpc−1
6 k 6 0.3Mpc−1 with 1, 000 hrs

of observation.

The primary observable quantity for radio telescopes are the visibilities, which are the

correlation of the measured voltages at each antenna. It is possible to directly estimate the

redshifted Hi 21-cm power spectrum from the visibilities measured by a low frequency radio

interferometric array (Bharadwaj & Sethi 2001; Bharadwaj & Ali 2005). Ali & Bharadwaj

(2014) presents theoretical predictions for the two-visibility correlations i.e. the correla-

tion between the visibilities measured at two baselines and two frequencies, expected at

OWFA considering both the Hi 21-cm signal and also various foreground components.

Chatterjee et al. (2017) and Marthi et al. (2017) have used numerical simulations to respec-

tively predict the 21-cm signal and the various foreground contributions to the two-visibility

correlations expected at OWFA. Considering OWFA, Sarkar et al. (2018) presents an an-

alytic technique to simulate the expected 21-cm visibility signal. The common assumption

of all the earlier works mentioned here is that the field of view (FoV) of the telescope is

sufficiently small so that the observed sky can be assumed to be flat. In fact the flat sky

approximation (FSA) is an underlying assumption in a large fraction of the works related to

measuring the cosmological 21-cm power spectrum (e.g. Morales & Hewitt 2004, Ali et al.

2015). Considering OWFA (both PI and PII), the FoV covers 1.8◦ in the E-W direction

while this is 4.8◦ and 28.6◦ in the N-S direction for PI and PII respectively. We expect the

FSA to be a reasonably good approximation for PI, however for PII the large N-S extent

of the FoV brings to question the validity of this assumption. It is desirable to consider the

spherical nature of the sky in making predictions for PII.

Shaw et al. (2014) have introduced the “m-mode” formalism which incorporates the

spherical nature of the sky. This essentially deals with drift scan observations, however their

results can also be used to predict the signal for observations where the telescope tracks a

fixed region of the sky. Liu et al. (2016) have introduced a spherical Fourier-Bessel technique

for analysing the 21-cm power spectrum, that incorporates the spherical nature of the sky.

Zhang et al. (2016a) and Ghosh et al. (2018) present sky map reconstruction methods based

on the spherical harmonics (SH) transformation.

In this work, we develop a spherical sky formalism which is particularly suited for tele-

scopes like OWFA, where the baselines are all coplanar with the antenna aperture. The

formalism relates the visibilities to the SH coefficients of the sky signal through the “beam

MNRAS 000, 1–?? (2018)
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Figure 1. This shows the aperture of one of the OWFA antennas. The unit vector p̂ is the pointing direction of the antenna
beam, n̂ points towards an arbitrary direction and r ′ refers to a displacement on the antenna aperture. The x and y axes are
along the N-S and E-W directions respectively, while the z axis, which is normal to the aperture, points towards the celestial
Equator (δ = 0).

transfer function”. Section 2 of this paper presents a brief overview of OWFA, whereas

the formalism is presented in Section 3. In addition to the numerical evaluation of the beam

transfer function, we also use the Limber approximation (LA) to obtain an analytical expres-

sion for the same. In Section 4 we use the formalism to relate the two visibility correlations

to the multi-frequency angular power spectrum (MAPS, Datta et al. 2007) which quanti-

fies the statistics of the 21-cm signal. In Section 5 we validate our formalism using all-sky

simulations. We study the differences between the FSA and the formalism of this paper in

order to quantify how important the spherical nature of the sky is for the different phases

of OWFA. The Results are presented in Section 6 and we present Summary and Conclusion

in Section 7.

2 OWFA

The Ooty Radio Telescope (ORT) is a 530m long (N-S) and 30m wide (E-W) offset-parabolic

cylinder, operating at a nominal frequency of 326.5MHz. The telescope is equatorially

mounted, i.e. the long axis of the reflecting cylinder is in the North-South direction, parallel

to the Earth’s rotation axis. The telescope can be mechanically steered along the East-West

direction by a single rotation along the axis of the cylinder. The feed consists of 1056 North-

South dipoles of length 0.5λ arranged nearly end to end along the focal line of the reflector.

The telescope has a 530m× 30m rectangular aperture.

Currently this telescope is being upgraded (Subrahmanya et al. 2017a) to operate as

an interferometer the Ooty Wide Field Array (OWFA). The upgrade will result in two

concurrent modes namely OWFA PI and PII respectively. In OWFA PI, the signals from

Nd = 24 adjacent dipoles will be combined to form a single antenna. Each antenna has a

MNRAS 000, 1–?? (2018)
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rectangular aperture of dimension b × d, where b = 30m and d = 11.5m respectively. The

array will have NA = 40 such antennas separated by d = 11.5m, arranged along the North-

South axis of the cylinder. In OWFA PII, the signals from Nd = 4 adjacent dipoles will be

combined to form a single antenna. Each antenna has a rectangular aperture of dimension

b × d, where b = 30m and d = 1.92m respectively. The array will have NA = 264 such

antennas separated by d = 1.92m arranged along the North-South axis of the cylinder.

Figure 1 shows a schematic diagram of the aperture for one of the OWFA antennas. For

both PI and PII this is a rectangle of dimensions b× d with b = 30m, however as discussed

earlier the dimension d is different for the two modes. In both the modes, the digitised sig-

nals from Nd successive dipoles are combined to form the antenna beam. This allows the

pointing direction p̂ of the antenna beam pattern (Figure 1) to be steered electronically

along the North-South direction by introducing phases. The antenna primary beam pattern

A (∆n̂ , ν) quantifies how the individual antenna responds to the signal from different direc-

tions n̂ on the sky (Figure 1), here ∆n̂ = n̂ − p̂ . It is possible to calculate A (∆n̂ , ν) (e.g

Chengalur et al. 2007) using,

A (∆n̂ , ν) =

∫

d2U
′

e2πiU
′
·∆n̂ ã

(

U
′

, ν
)

, (1)

where, U
′

= r ′/λ refers to displacement r ′ on the antenna aperture and the aperture

power pattern ã
(

U
′

, ν
)

is the auto-convolution of the electric field pattern at the antenna

aperture (Figure 1). It is useful to note that the phase factor e2πiU
′
·∆n̂ in eq. (1) is invariant

under a mirror reflection with respect to the aperture plane. It follows that eq. (1) predicts

a primary beam pattern which is exactly identical in the upper hemisphere (UH) and lower

hemisphere (LH) of the sky. The telescope, however, only responds to the UH and the LH

is not accessible to the telescope. Here we have exploited the fact that eq. (1) predicts an

identical beam pattern in both the UH and the LH to simplify the mathematical analysis

in subsequent parts of this paper.

For the purpose of the present analysis we make the simplifying assumption that the

aperture is uniformly illuminated such that the electric field is uniform everywhere on the

b×d rectangular aperture of the OWFA antenna. In this case the OWFA the aperture power

pattern can be expressed as (Ali & Bharadwaj 2014),

ã
(

U
′

, ν
)

=
λ2

bd
Λ

(

U
′

x

d
λ

)

Λ

(

U
′

y

b
λ

)

, (2)

MNRAS 000, 1–?? (2018)
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(a) Primary beam pattern for PI
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(b) Primary beam pattern for PII

Figure 2. The left and right panels show the primary beam pattern on the visible upper hemisphere for OWFA PI and PII
respectively.

where U
′

= (U
′

x, U
′

y), Λ(ξ) is the triangular function defined as, Λ(ξ) = 1 − |ξ| for |ξ| < 1

and Λ(ξ) = 0 for |ξ| > 1 (see Figure (2a) of Ali & Bharadwaj 2014).

We see that for OWFA, ã
(

U
′

, ν
)

peaks at U
′

= 0 and falls off as U
′

is increased.

Further this has compact support and ã
(

U
′

, ν
)

= 0 if U
′

exceeds the aperture dimensions.

Note that these properties of ã
(

U
′

, ν
)

are not particular to OWFA alone. In general, for

any antenna, we expect ã
(

U
′

, ν
)

to peak at U
′

= 0, fall off as U
′

is increased and to have

compact support whereby ã
(

U
′

, ν
)

= 0 if U
′

exceeds the aperture dimensions.

Using equation (1) to calculate the OWFA primary beam pattern A(∆n , ν), we get the

product of two sinc-squared functions

A(∆n , ν) = sinc2
(

πbν∆ny

c

)

sinc2
(

πdν∆nx

c

)

(3)

where ∆ny and ∆nx are respectively the y and x components of ∆n (Marthi et al. 2017).

Figure 2 shows the primary beam pattern for OWFA PI and PII as a function of the ce-

lestial coordinates (α, δ) on the visible upper hemisphere of the sky. Here the telescope beam

is assumed to point towards p̂ = (α, δ) = (0, 0). The OWFA beam is the diffraction pattern

of a rectangular slit of dimension b × d. The beam pattern is normalized to A(∆n , ν) = 1

at the maxima which occurs when ∆n = 0 (i.e. n = p̂), and A(∆n , ν) falls off as ∆n is

increased. The angular extent of the main lobe is determined by the first null which occurs

at α0 ≈ λ/b = ±1.8◦ along α for both PI and PII, and at δ0 ≈ ±4.8◦ and ±28.6◦ along δ

for PI and PII respectively. After the first nulls, there are side lobes in the OWFA primary

beam pattern. The maxima of the 1st and 2nd side lobes are respectively 5% and 2% of the

maxima of the main lobe.

The Fourier relation (eq. 1) implies that the primary beam pattern gets wider if the

MNRAS 000, 1–?? (2018)
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PSfrag replacements
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Figure 3. This shows a pair of antennas in a radio interferometer. Here r is the antenna separation while p̂, n̂ and r ′ are as
defined in Figure 1.

antenna aperture dimensions are reduced. Here, we see that for PI the angular extent of the

main lobe, which defines the antenna’s FoV, is small and restricted within a few degrees

on the sky. For this small region (θ ≪ 1 in radians) it is a reasonably good approximation

to neglect the curvature of the sky, and it is adequate to carry out any further analysis for

OWFA PI using the FSA (e.g. Marthi et al. 2017). For PII, however, we find that the FoV

extends across 57.2◦ in the N-S direction. It is not possible to ignore the curvature of the

sky over such large angular extent, and it is necessary to consider the spherical sky for any

further analysis for PII. Considering a radio-interferometer like OWFA, in the next Section

we develop a formalism to analyze the measured visibilities in terms of a SH expansion which

provide a natural basis for the signal on a spherical sky.

3 VISIBILITIES AND BEAM TRANSFER FUNCTIONS

The complex visibilities V (U , ν) are the quantities measured in a radio interferometric array.

Here the baseline U refers to a pair of antennas separated by r (Figure 3), and U = r/λ

is the antenna separation in units of the observing wavelength. The baselines available at

OWFA are

U n = n
d

λ
î (1 6 n 6 NA − 1) (4)

where the values of NA and d are different for PI and PII respectively, and the (x, y, z)

coordinate system is as shown in Figure 1.

We then have the visibility given by (Perley et al. 1989)

V (U , ν) = Qν

∫

UH

dΩn̂T (n̂ , ν)A (∆n , ν) e−2πiU ·∆n , (5)

where, Qν = 2kB/λ
2 is the conversion factor from brightness temperature to specific intensity

in the Raleigh - Jeans limit, T (n̂ , ν) is the brightness temperature distribution on the sky

and dΩn̂ is the elemental solid angle in the direction n̂ . For the dΩn̂ integral, we use UH,LH

MNRAS 000, 1–?? (2018)
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and S to denote the upper hemisphere, the lower hemisphere and the entire celestial sphere

respectively. Note that the integral here is over the visible upper hemisphere of the sky. The

entire analysis in the rest of this sub-section is restricted to a single frequency, and in much

of the subsequent text we do not show ν explicitly.

For a telescope with a sufficiently large aperture, the primary beam pattern A (∆n̂)

falls off rapidly as ∆n is increased. This restricts the FoV to a small region of the sky.

Considering the small FoV, we can adopt the FSA whereby ∆n = θ is a 2D vector on the

plane of the sky with dΩn̂ = d2θ. It is now natural to interpret V (U ) (eq. 5) as the Fourier

transform of the product T (θ)A (θ). Here, the visibility can be expressed as a convolution

(Ali & Bharadwaj 2014)

V (U ) = Q

∫

d2U
′

ã(U −U
′

) T̃ (U
′

) , (6)

where T̃ (U
′

) is the Fourier transform of the brightness temperature distribution on the sky.

We may interpret V (U ) as the weighted sum of different Fourier modes T̃ (U
′

) with the

weights being given by the shifted aperture power pattern ã(U − U
′

). The contribution

peaks at U
′

= U where the value of ã(U − U
′

) is maximum. This tells us that we may

associate each visibility V (U ) with a particular Fourier component T̃ (U ) of the signal.

To be more precise, the sum extends over a width |U − U
′ | which is of the order of the

dimensions of the antenna aperture in units of the observing wavelength. As discussed earlier,

ã(U −U
′

) is zero beyond the extent of the antenna aperture.

The FSA breaks down for the antennas with a small aperture which have a large FoV.

Here, one has to consider the spherical nature of the sky. The SH function Y m
ℓ (n̂) provide

a natural basis for the signal on a spherical sky, and in the SH expansion we have

T (n̂ , ν) =
∑

ℓ,m

amℓ (ν) Y m
ℓ (n̂), (7)

where amℓ are the SH coefficients of the brightness temperature distribution.

As discussed earlier by Shaw et al. (2014, 2015) (and also by Zheng et al. 2014; Zhang et al.

2016a,b; Liu et al. 2016), the visibilities can be expressed in terms of the SH coefficients amℓ

as,

V (U ) =
∑

ℓ,m

amℓ Bm
ℓ (U ) . (8)

The visibility expressed in eq. (8) is a weighted sum of the SH coefficients amℓ with the weights

being given by the beam transfer function Bm
ℓ (U ). Note that this is in exact analogy with

MNRAS 000, 1–?? (2018)
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eq. (6) with the difference that in the FSA we use Fourier modes T̃ (U ) instead of the SH

coefficients amℓ , and we have the shifted aperture power pattern ã(U −U
′

) as the weights

instead of Bm
ℓ (U ). This analogy between eqs. (8) and (6) leads to a picture where we

interpret Bm
ℓ (U ) as the spherical sky generalization of the shifted aperture power pattern

ã(U −U
′

).

The beam transfer function Bm
ℓ (U ) which quantifies how a visibility V (U ) responds to

a particular SH coefficient amℓ can be calculated (Shaw et al. 2014) using

Bm
ℓ (U ) = Q

∫

UH

dΩn̂Y
m
ℓ (n̂)A (∆n̂) e−2πiU ·∆n̂ . (9)

The integrand here contains two highly oscillatory functions (Y m
ℓ (n̂) and e−2πiU ·∆n̂), and

the integral extends over the visible upper hemisphere of the sky. It is computationally

expensive and cumbersome to evaluate such integrals, particularly for large values of ℓ and

U . The major contribution to the integral comes from the main lobe of the primary beam

pattern, and one may consider using this to restrict the integral. However the main lobe

itself extends over a large region of the sky for telescopes with a small aperture. Further, the

sidelobes also contribute to the integral, and it is necessary to include the whole hemisphere

to take this into account. Finally, we note that eq. (10) provides very little insight into the

behaviour of Bm
ℓ (U ) i.e. at which ℓ,m values we have the maximum contribution for a

particular baseline U .

In this paper we develop a different formalism for calculating the beam transfer function

Bm
ℓ (U ). As noted earlier, it is natural to interpret Bm

ℓ (U , ν) as the spherical sky coun-

terpart of the shifted aperture power pattern ã(U − U
′

), and in this paper we express

Bm
ℓ (U ) as an integral of the aperture power pattern ã(U − U

′

). The dΩn̂ integrals in

eqs. (5) and (10) are limited to the visible upper hemisphere (UH). The SH functions cease

to be orthonormal when the domain is restricted to a hemisphere. The analysis is consid-

erably simplified if we assume that the primary beam pattern and also the sky signal are

both replicated on the lower hemisphere (LH) by a reflection with respect to the plane of

the antenna aperture (the xy plane in Figure 1). The domain of the dΩn̂ integrals are now

extended to the entire sphere (S). In this situation, the upper and lower hemispheres both

make an equal contribution to the visibility signal. We account for this by introducing a

factor of 1/2 in the beam transfer function which is now defined as

Bm
ℓ (U ) =

Q

2

∫

S

dΩn̂Y
m
ℓ (n̂)A (∆n̂) e−2πiU ·∆n̂ . (10)

The fact that Y m
ℓ (n̂) → (−1)ℓ+mY m

ℓ (n̂) under a mirror reflection with respect to the xy

MNRAS 000, 1–?? (2018)
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plane implies that Bm
ℓ (U ) = 0 when ℓ+m is odd, and Bm

ℓ (U ) is non-zero only when ℓ+m

is even.

It is necessary to note that amℓ in eq. (8) now refers to the SH expansion of the replicated

brightness temperature signal T (n̂) i.e. the signal in the LH is a mirror reflection of the

signal in the visible UH , the reflection here is with respect to the plane of the antenna

aperture.

We proceed by expressing A (∆n̂) in eq. (10) in terms of the aperture power pattern

ã(U −U
′

) using eq. (1) which gives us

Bm
ℓ (U ) =

Q

2

∫

S

dΩn̂Y
m
ℓ (n̂)e−2πiU ·∆n̂

∫

d2U
′

e2πiU
′
·∆n̂ ã(U −U

′

) . (11)

Note that the dΩn̂ integral in eq. (11) is over the entire sphere.

The subsequent analysis is considerably simplified if we assume that the baselines U are

coplanar with the antenna aperture. This assumption is true for OWFA (Figure 3). We also

expect this to be a good approximation for any compact array of fixed antennas which point

vertically overhead. Under this assumption, U and U
′

in eq. (11) are co-planer vectors, and

we can write

Bm
ℓ (U ) =

Q

2

∫

d2U
′

ã(U −U
′

)

[
∫

S

dΩn̂ Y m
ℓ (n̂)e2πiU

′
·∆n̂

]

. (12)

We use the identity

e2πiU
′
·n̂ = 4π

∑

ℓ,m

iℓ Y m
ℓ (Û

′

) Y m∗
ℓ (n̂) jℓ(2π|U

′ |) (13)

to evaluate the integral in the square brackets of eq. (12), here jℓ(2π|U
′|) is the ℓth order

spherical Bessel function of first kind. We finally obtain

Bm
ℓ (U ) = 2πiℓ Q

∫

d2U
′

ã(U −U
′

)Y m
ℓ (Û

′

)jℓ(2π|U
′ |) e−2πiU

′
·p̂ , (14)

which we use to compute the beam transfer function Bm
ℓ (U ).

The integrand here contains three highly oscillatory functions (Y m
ℓ (Û

′

), jℓ(2π|U
′|) and

e−2πiU
′
·p̂), however in contrast to eq. (10), the domain of the integral is restricted by ã(U −

U
′

) which has compact support. As mentioned earlier, ã(U −U
′

) is zero if U −U
′

exceeds

the aperture dimensions in units of the observing wavelength. This significantly reduces the

computation for calculating Bm
ℓ (U ), particularly for small apertures where the primary

beam pattern covers a large region of the sky.

The subsequent analysis is restricted to the situation where the pointing direction p̂ of the

antenna beam pattern is perpendicular to the antenna aperture so that we have e−2πiU
′
·p̂ = 1

for the phase factor in eq. (14). We adopt the coordinate system shown in Figure 1 with the

MNRAS 000, 1–?? (2018)
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PSfrag replacements

ã(U −U
′

)

φ
Ux

Uy

U ′

U
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Figure 4. This shows the domain of integration in eq. (15). Here U corresponds to the baseline, U
′

and φ can vary with in the
aperture of the antenna (shown by the rectangle). φ becomes significantly small for large baseline |U | >> d/λ. The Ux − Uy

plane here corresponds to the θ = π/2 for the previously adopted spherical polar coordinate system.

baseline U (Figure 3) aligned with x axis. Expressing eq. (14) in spherical polar coordinates,

the vector U
′

is restricted to the θ = π
2
plane and we then have Y m

ℓ (Û
′

) = Y m
ℓ (π/2, 0) eimφ.

So the beam transfer function Bm
ℓ (U ) can be written as

Bm
ℓ (U ) = 2πiℓ Y m

ℓ (
π

2
, 0)Q

∫

dU
′

U
′

jℓ(2πU
′

)

∫

dφ ã
(

U − U
′

cosφ, U
′

sin φ
)

eimφ , (15)

where the domain of integration is shown in Figure 4. The integral here contains two highly

oscillatory functions jℓ(2πU
′

) and eimφ.

Considering the complex conjugate [Bm
ℓ (U )]∗, the fact that Y m∗

l (θ, φ) = (−1)m Y −m
l (θ, φ)

implies that [Bm
ℓ (U )]∗ = B−m

ℓ (U ). If we further assume that the aperture power pattern

is symmetric with respect to Uy i.e. ã(Ux,−Uy) = ã(Ux, Uy) (which is true for OWFA) we

have [Bm
ℓ (U )]∗ = (−1)ℓBm

ℓ (U ). This implies that for even ℓ we have the non-zero elements

B0
ℓ (U ), B2

ℓ (U ) = B−2
ℓ (U ), B4

ℓ (U ) = B−4
ℓ (U ), ..., Bℓ

ℓ(U ) = B−ℓ
ℓ (U ) which are all real. For

odd ℓ we have the non-zero elements B1
ℓ (U ) = −B−1

ℓ (U ), B3
ℓ (U ) = −B−3

ℓ (U ), ..., Bℓ−1
ℓ (U ) =

−B−ℓ+1
ℓ (U ) which are all imaginary. The other elements of Bm

ℓ (U ) are all zero.

It is possible to obtain further insight into the behaviour of Bm
ℓ (U ) if we adopt the LA

(Limber 1954)

jℓ(2πU
′

) ≈
√

π

2ℓ+ 1
δD

(

ℓ+ 1/2− 2πU
′
)

. (16)

which holds for large ℓ. Here we also assume that the baseline is large compared to the

antenna aperture dimensions U ≫ b/λ so that the φ range subtended by the aperture

(Figure 4) is small whereby cosφ ≈ 1 and sinφ ≈ φ. We then have

Bm
ℓ (U ) = iℓ

√

2ℓ+ 1

16π
Y m
ℓ (

π

2
, 0)Q

∫

dφ ã

(

U − 2ℓ+ 1

4π
,
2ℓ+ 1

4π
φ

)

eimφ . (17)

For OWFA we can decompose the primary beam pattern (eq. 3) asA (∆n̂) = Ax(∆nx)Ay(∆ny)

and the aperture power pattern (eq. 2) as ã
(

U
′
)

= ãx(U
′

x)ãy(U
′

y), where Ax(∆nx) and

MNRAS 000, 1–?? (2018)
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Figure 5. This shows the variation of |Fm
ℓ

| as a function of m for the fixed ℓ values 500(solid line), 1000(dased line) and
3000(dotted line).

Ay(∆ny) are respectively the Fourier transforms (eq. 1) of ãx(U
′

x) and ãy(U
′

y). It is then

possible to analytically evaluate the φ integral in eq. (17) and we have

Bm
ℓ (U ) = iℓ Q

√

π

2ℓ+ 1
Y m
ℓ (

π

2
, 0)ãx

(

U − 2ℓ+ 1

4π

)

Ay

(

m

2ℓ+ 1

)

. (18)

where ãx(U
′

x) = (λ/d)Λ(U
′

xλ/d) and Ay(∆ny) = sinc2(πb∆ny/λ) for OWFA.

It is interesting to note that, in contrast to eq. (10), the alternate expression (eq. 14) ob-

tained here provides useful insight into the behaviour of the beam transfer function Bm
ℓ (U ).

We see that the integrand in eq. (14) is the product of ã(U − U
′

), which is peaked at

U = U
′

, and jℓ(2π|U
′ |), which is peaked at ℓ = 2π|U ′|. Based on this we can infer that

Bm
ℓ (U ) has a maximum value when ℓ = 2π|U |, and the value of Bm

ℓ (U ) falls off as the

difference between ℓ and 2π|U | is increased. In other words, the visibility V(U , ν) receives

maximum contribution from the SH coefficients amℓ with ℓ = 2π|U |. The spread ∆ℓ around

this ℓ value depends on the aperture power pattern with ∆ℓ ∼ 2πD/λ where D represents

the aperture size, i.e. we have a smaller spread in ℓ if the aperture is small as compared to a

large aperture. This behaviour is explicit in the approximate analytical expression (eq. 18)

for Bm
ℓ (U ) .

Eq. (18) provides further insight in the behaviour of Bm
ℓ (U ). For a fixed ℓ, it is possible to

analyze the m dependence of Bm
ℓ (U ) by considering the function Fm

ℓ = Y m
ℓ (π

2
, 0)Ay

(

m
2ℓ+1

)

which appears in eq. (18). Figure 5 shows the variation of |Fm
ℓ | as a function of m for fixed

ℓ values (mentioned in the figure). We find that the m dependence of |Fm
ℓ | is very similar

to sinc2(πbm/(λ(2ℓ+ 1))). We expect the amplitude of Bm
ℓ (U ) to be maximum for m = 0

and decrease with increasing m.

Figure 6 shows the OWFA beam transfer function Bm
ℓ (U a) as a function of ℓ for a few

fixed values of U a with the a and m values as mentioned in the figure. The solid and dashed

MNRAS 000, 1–?? (2018)
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Figure 6. This shows the beam transfer function Bm
ℓ
(U a) as a function of ℓ for fixed values of U a with the a and m values

as mentioned in the figure. The top and bottom rows show results for OWFA PI and PII respectively. The solid and dashed
lines represent Bm

ℓ
(U a) computed using eq. (14) and the LA (eq. 18) respectively.

lines correspond to Bm
ℓ (U a) computed using eq. (14) and the LA (eq. 18) respectively. The

top row shows the results for OWFA PI where we see that |Bm
ℓ (U a)| peaks at ℓa = 395 and

1650 for a = 5 and 21 respectively. This is consistent with ℓa ≈ 2πad/λ where d = 11.5m

and 2πd/λ ≈ 79. We also see that, as expected, for all values of a the beam transfer function

extends over a nearly fixed interval of ∆ℓ = ±79 around the peak value. We find that LA

works very well for the larger baseline whereas it is in reasonable agreement for the smaller

baseline. The bottom row of Figure 6 shows the results for OWFA PII where we see that

|Bm
ℓ (U a)| peaks at ℓa = 390 and 782 for a = 30 and 60 respectively, which is consistent

with ℓa ≈ 2πad/λ where d = 1.92m and 2πd/λ ≈ 13. However, unlike PI, here we see that

|Bm
ℓ (U a)| shows several secondary peaks (oscillations) after the first zero to the left of ℓa and

it shows a tail which extends to ∆ℓ ≈ 40 to the right of ℓa. These features are not present

in the Bm
ℓ (U a) computed using LA and we find that the LA does not work well even for

the large baselines (e.g. a = 60). The oscillations here are a manifestation of the oscillations

in the Bessel function jℓ(2πU
′

) in eq. (15). For PI the aperture power pattern ã(U −U
′

)

is wider than the oscillation period of jℓ(2πU
′

) and these oscillations are averaged out in
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eq. (15). However, PII has a smaller aperture and consequently these oscillations persist in

Bm
ℓ (U a).

4 VISIBILITY CORRELATION AND ANGULAR POWER SPECTRUM

The interest here is in a statistical detection of the redshifted cosmological 21-cm signal using

radio-interferometric observations. In this section we consider a more general situation where

we wish to detect an arbitrary statistical sky signal using radio-interferometric observations.

We assume that the brightness temperature distribution T (n̂ , ν) on the sky is the outcome

of a statistically homogeneous and isotropic random process. Note that, this assumption

requires T (n̂ , ν) to be defined on the entire celestial sphere S. The two point statistics of

this signal can be completely quantified using the multi-frequency angular power spectrum

(MAPS; Datta et al. 2007) which jointly characterises the angular and the frequency de-

pendence of this sky signal. The MAPS of the brightness temperature distribution at two

different frequencies νi and νj is defined through

Cℓ (νi, νj) = 〈amℓ (νi) a
m ∗
ℓ (νj)〉 . (19)

The measured visibilities V (U , ν) arising from this random signal are also random. We use

two-visibility correlations (Bharadwaj & Sethi 2001) to observationally quantify the statis-

tical properties of the input sky signal. The two-visibility correlation

V2 (U a, νi;U b, νj) ≡ 〈V(U a, νi)V∗(U b, νj)〉 (20)

refers to the correlation in the visibilities measured at two baselines U a and U b, and fre-

quencies νi and νj . The angular brackets here denote an ensemble average over different

random realization of the sky signal. The two point statistics, or equivalently the power

spectrum (MAPS), of the sky signal is contained in this two-visibility correlation.

The calculations are fairly simplified in the FSA (Ali & Bharadwaj 2014) where we have

V2 (U a, νi;U b, νj) =

(

∂B

∂T

)2 ∫

d2U
′

ã
(

U a −U
′

, νi

)

ã
(

U b −U
′

, νj

)

C2πU ′ (νi, νj) , (21)

which relates the visibility correlation to MAPS C2πU (νi, νj). This can be obtained by using

eq. (6) in eq. (20), and finally utlizing the fact (Datta et al. 2007) that

〈T̃ (U , νi)T̃ (U
′

, νj)〉 = δ2D

(

U −U
′
)

C2πU (νi, νj) (22)

where δ2D

(

U −U
′
)

is the 2D Dirac delta function. This expression for the visibility corre-

lation (eq. 21) is adequate for telescopes with small FoV (e.g. OWFA PI).

It is necessary to consider the SH formalism (eq. 8) for telescopes with a large FoV (e.g.
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OWFA PII). To obtain an expression for the visibility correlation in the SH formalism, we

revisit the visibilities as discussed earlier (in eq. 5),

V (U ) = Q

∫

UH

dΩn̂T (n̂)A (∆n) e−2πiU ·∆n ,

where the dΩn̂ integral is over the visible upper hemisphere (UH). For our convenience, we

introduce the visibility

V ′

(U ) = Q

∫

LH

dΩn̂T (n̂)A (∆n) e−2πiU ·∆n , (23)

where the dΩn̂ integral is over the lower hemisphere (LH) of the sky. Here we can safely

assume that the major contributions of the sky signal to V (U ) and V ′

(U ) are statistically

uncorrelated which implies that the V (U ) and V ′

(U ) are statistically uncorrelated i. e.
〈

(V (U ) + V ′

(U ))(V (U ) + V ′

(U ))∗
〉

=
〈

|V (U ) |2
〉

+
〈

|V ′

(U ) |2
〉

. (24)

We also have,

〈

|V (U ) |2
〉

=
〈

|V ′

(U ) |2
〉

. (25)

Following the formalism discussed in the previous section, the total visibility can be expanded

as,

V (U ) + V ′

(U ) =
∑

ℓ,m

bmℓ Bm
ℓ (U ) . (26)

Here bmℓ are the SH coefficients of the sky signal T (n̂) + TR(n̂), where TR(n̂) is the T (n̂)

replicated on the whole sphere (S) after a reflection with respect to the aperture plane of the

antenna. The statistical properties of bmℓ can be quantified using the MAPS of the brightness

temperature distribution T (n̂) (discussed in eq. 19) as,
〈

bmℓ (νi) b
m

′
∗

ℓ′
(νj)

〉

= 4 Cℓ (νi, νj) δℓℓ′ δmm′ . (27)

We then obtain the visibility correlation to be

〈V(U a, νi)V∗(U b, νj)〉 =
∑

ℓ

Cℓ (νi, νj) Wℓ (U a, νi;U b, νj) , (28)

where Wℓ is a window function which is defined as

Wℓ (U a, νi;U b, νj) = 2
∑

m

Bm
ℓ (U a, νi) B

m∗
ℓ (U b, νj) . (29)

Eqs. (21) and (28) both describe how the two-visibility correlations V2 (U a, νi;U b, νj),

which can be measured directly from observations, is related to the statistics of the sky signal

namely MAPS Cℓ (νi, νj). We see that in both cases the two-visibility correlation is a weighted

sum of Cℓ (νi, νj). We have the weights ã (U a −U ) ã (U b −U ) in the FSA (eq. 21) where

ℓ = 2π|U |. First considering a situation whereU a = U b, the weight |ã (U a −U ) |2 peaks at
MNRAS 000, 1–?? (2018)
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ℓ = 2π|U a| and we have a contribution from the range of multipoles ∆ℓ ∼ ±2πD/λ, where

D is the dimension of the antenna aperture, the weight falls to zero beyond this interval.

Considering two different baselines U a 6= U b, the weights are the product of two functions,

one which peaks at U = U a and another peaks at U = U b. The weights have non-zero

values only if there is some overlap between ã (U a −U ) and ã (U b −U ) i.e. |U a −U b| <
2πD/λ. There is no overlap and the visibilities are uncorrelated if |U a−U b| > 2πD/λ. The

properties of the FSA visibility correlation have been analyzed in detail in several earlier

works (Bharadwaj & Sethi 2001; Bharadwaj & Ali 2005).

Considering the SH formalism (eq. 28), we see that, here also the weights are a product

of two functions (eq. 29). Recollect that Bm
ℓ (U , ν) peaks at ℓ = 2π|U | and has a width

∆ℓ ∼ ±2πD/λ around this value. Considering the weight function for U a = U b we see that

this peaks at ℓ = 2π|U a|, or in other words, the visibility correlation V2 (U a, νi;U a, νj)

essentially responds to Cℓ (νi, νj) in a range of multipoles ∆ℓ = ±2πD/λ peaked around

ℓ = 2π|U a|. The fact that the index m does not appear in eq. (28) is a consequence of the

assumption that the sky signal is statistically homogeneous and isotropic on the sky. Next,

considering two different baseline U a 6= U b, here again we see that the expectations are

qualitatively similar to these for the FSA i.e. the visibilities are correlated only if |U a−U b| <
2πD/λ and there is no correlation for larger separations. Although the visibility correlations

are expected to be qualitatively similar in both the FSA and the SH, the predicted values

are expected to differ. We have quantified these differences in subsequent sections of this

paper.

4.1 The OWFA Window Function (Wℓ)

In this subsection we explicitly calculate the window function and discuss its behaviour for

the two modes PI and PII of OWFA. We have used the OWFA aperture power pattern

(eq. 2) in eq. (14) to evaluate Bm
ℓ (U , ν). Finally, we have used eq. (29) to compute the

window function Wℓ (U a, νi;U b, νj). For comparison, we have also used LA (eq. 16) to

calculate Bm
ℓ (U , ν) and used this in eq. (29) to compute the corresponding window function

Wℓ (U a, νi;U b, νj). Throughout the entire subsequent analysis we have assumed that the

pointing direction p̂ is towards the celestial equator i.e. normal to the aperture (Figure 1)

which results in e−2πiU
′
·p̂ = 1.

We first consider the OWFA window function Wℓ (U a, νi;U b, νj) for a situation where
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Figure 7. This shows the window functions for OWFA PI and PII. Solid lines in the top row show the window func-
tions Wℓ (U a, νc;U a, νc) for the same baselines of OWFA PI for a = 5, 6, 21 and 22. The dot-dashed line shows the
Wℓ (U a, νc;U a, νc) evaluated using LA for a = 21. Solid lines in the bottom row show the window functions Wℓ (U a, νc;U a, νc)
for the same baselines of OWFA PII for a = 30, 31, 60 and 61. The dashed lines in the figure represents the window functions
Wℓ (U a, νc;U a±1, νc) for the corresponding adjacent baselines.

we have the same baseline U a = U b = ad/λ. Based on our earlier discussion, the OWFA

window function Wℓ (U a, νi;U a, νj) is expected to peak at ℓa = 2πad/λ and have a width

of ∆ℓ = ±2πd/λ around ℓa. Figure 7 shows the OWFA window function Wℓ (U a, νi;U b, νj)

as a function of ℓ for a few fixed values of U a (mentioned in the figure legend), and fixed

frequency νi = νj = νc = 326.5MHz, which is the nominal frequency for OWFA. The

top row shows the results for OWFA PI where we see that Wℓ (U a, νc;U a, νc) peaks at

ℓa = 395, 471, 1650 and 1725 for a = 5, 6, 21 and 22 respectively which is consistent with

ℓa ≈ 2πad/λ where d = 11.5m and 2πd/λ ≈ 79. We also see that, as expected, for all values

of a the window function extends over a nearly fixed interval of ∆ℓ = ±79 around the peak

values. The dot-dashed line in the right panel of the top row shows the window function
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calculated using LA for a = 21. We find that LA works well in the large baseline regime. The

bottom row shows the results for OWFA PII where we see that Wℓ (U a, νc;U a, νc) peaks

at ℓa = 390, 405, 782 and 797 for a = 30, 31, 60 and 61 respectively which is consistent with

ℓa ≈ 2πad/λ where d = 1.92m and 2πd/λ ≈ 13.13. Considering the width of the window

function, we see that for all values of a, Wℓ (U a, νc;U a, νc) goes to zero at ∆ℓ ≈ 13 to the

left of ℓa. However, unlike PI, here we see that Wℓ (U a, νc;U a, νc) shows several secondary

peaks (oscillations) after the first zero to the left of ℓa and it shows a tail which extends

to ∆ℓ ≈ 40 to the right of ℓa. The oscillatory features and the extended tail are both a

consequence of the spherical Bessel function jℓ(2π|U
′ |) in eq. (14). For PI these oscillations

and the tail are washed out because of the integral over the broader aperture power pattern

ã
(

U a −U
′
)

.

We next consider the OWFA window function Wℓ (U a, νi;U b, νj) for a situation where

we have the two different baselines U a 6= U b. The aperture power patterns ã (U a −U )

and ã (U b −U ) have an overlap only if b = a ± 1 i.e. the overlap is restricted to the

adjacent baselines and does not extend beyond (Figure 2 of Ali & Bharadwaj 2014). We

further expect the window function Wℓ (U a, νc;U a±1, νc) for the adjacent baselines to peak

at ℓa = π(2a±1)d/λ which corresponds to the average of the two baselines and have a width

∆ℓ = ±πd/λ which is half the width of Wℓ (U a, νc;U a, νc). For both PI and PII we find

that the peaks of the window function Wℓ (U a, νc;U a±1, νc) are located at the expected ℓ

values, the width also is consistent with the expectations for PI. However, for PII we find

that Wℓ (U a, νc;U a±1, νc) oscillates to the left of the peak and has an extended tail to right.

As mentioned earlier, these are consequences of the spherical Bessel function jℓ(2π|U
′|) in

eq.(14). We finally note that, for both PI and PII there is an ℓ range where the window

function Wℓ (U a, νc;U a±1, νc) become negative, while this is relatively prominent for PII

this feature is also present for PI.

5 SIMULATION

In the previous section we have developed a formalism which relates the two-visibility cor-

relations V2 (U a, νi;U b, νj), which can be measured from the observations, to the statistics

of the sky signal namely MAPS Cℓ (νi, νj). In this section we present simulations that we

have carried out to validate this theoretical formalism. The entire analysis is restricted to a
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Figure 8. This shows a single realization ofthe brightness temperature fluctuations used in the simulations.

single frequency νc = 326.5MHz and do not show this explicitly in much of the subsequent

text.

We assume that the sky signal T (n̂) is a Gaussian random field with an angular power

spectrum Cℓ which we have modelled as a power law

Cℓ = A

(

ℓ

ℓ0

)n

, (30)

arbitrarily normalized to unity (i.e. A = 1) at ℓ = ℓ0 = 1. We have considered the power

law index to have value n = −2 in our analysis.

The simulations were carried out using the package HEALPix (Hierarchical Equal Area

isoLatitude Pixelization of a sphere; Górski et al. 2005). For OWFA, the largest baseline

corresponds to an angular multipole ℓ ≈ 2π× 530m/λc = 3624. In the simulations, we have

set ℓmax = 4096 which corresponds to a pixel size of 1.712
′

. We have used the SYNFAST

routine of HEALPix to generate different statistically independent realization of the sky

signal T (n̂) corresponding to the input Cℓ.

We have computed the OWFA visibilities from the simulated maps using eq. (5). Here,

it is convenient to adopt the coordinate system defined in Figure 2 of Marthi et al. (2017)

whereby

V(U a) = Q∆Ωpix

Npix−1
∑

p=0

T (αp, δp)A(αp, δp)e
−2πiUa (sin δp−sin δ0), (31)

where ∆Ωpix refers to the solid angle subtended by each simulation pixel, (αp, δp) refers to

the (RA, DEC) of the p-th pixel, and (α0, δ0) refers to the pointing direction. The sum here

runs over all the pixels (Npix in number) in the simulation.

The OWFA primary beam pattern A(∆n̂) eq. (3) can be expressed as

A(αp, δp) = sinc2
(

πbνc
c

cosδp sin (αp − α0)

)

sinc2
(

πdνc
c

(sinδp − sinδ0)

)

. (32)

As mentioned earlier, we have used (α0, δ0) = (0, 0) for the simulations presented here.
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Figure 9. The upper left and right panels show the two-visibility correlation V2 (U a;U b) for the same and the adjacent
baselines respectively for OWFA PI. The solid lines show the theoretical predictions (eq. 28) while the points with error-bars
show the mean and standard deviation from the simulations considering a few selected baselines. The points in the bottom
panels show ∆ (eq. 33) which quantifies the deviation between the theoretical predictions and the simulations.

Figure 8 shows the brightness temperature fluctuations corresponding to a particular

realization of the simulations. We have used an ensemble of 100 independent realizations of

the simulated sky signal to estimate the visibility correlation V2 (U a;U b) and its variance.

6 RESULTS

The upper panels of Figure 9 show the two-visibility correlation V2 (U a;U b) for OWFA PI

considering the fixed frequency νi = νj = νc, which has not been shown explicitly. The left

panel considers the situation where the two baselines are same U a = U b, whereas the right

panel shows the results for the adjacent baselines U b = U a+1. We have used the Cℓ given
by eq. (30) in eq. (28) to calculate the full SH theoretical predictions for the two-visibility

correlations V2 (U a;U b) shown by the solid lines in Figure 9. We find that for both the

same and the adjacent baselines, the theoretical predictions are in good agreement with the

simulation. Note that Nr = 100 independent realizations were used to estimate the mean

V2 (U a;U b) (shown with points) and the standard deviation σ (shown with error bars). The

lower panels of Figure 9 show

∆ =
δV2 (U a;U b)

√
Nr

σ
, (33)
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Figure 10. The same as Figure 9 for OWFA PII.

where δV2 (U a;U b) is the difference between the theoretical predictions and the simulations.

We expect, ∆ to have a Gaussian distribution with zero mean and unit variance. We find that

the values of ∆ in the lower panel of Figure 9 are roughly centred around zero and distributed

within ±3, consistent with what one would expect from the Gaussian distribution.

Figure 10 shows a comparison of the theoretical predictions with the simulations for the

two visibility correlations for OWFA PII. Here also we find that the theoretical predictions

are in good agreement with the simulations. The fact that the theoretical predictions are in

good agreement with the simulations for both OWFA PI and PII validates our formalism

for calculating the beam transfer function (eq. 14), the window function (eq. 29) and the

visibility correlation (eq. 28).

Considering the two-visibility correlation V2 (U a;U b) for OWFA PI, the upper panels of

Figure 11 show a comparison between the FSA (eq. 21) (solid lines), the full SH formalism

(eqs. 14, 28, 29) (points), and the SH formalism with LA for Bm
ℓ (U ) (eqs. 18, 28, 29) (dot-

dashed lines). The lower panels show the percentage deviation of the FSA and LA predictions

relative to the full SH analysis. Considering the correlations at the same baseline (left panels),

we find that the FSA is in good agreement with the full SH predictions over the entire U

range and the deviations are less than 5%. Considering the LA, we find that the results

match the full SH analysis at large baselines, the deviations are 6 5% for U > 60. However,

these deviations increase rapidly at smaller baselines and we have ∼ 100% deviations at the
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Figure 11. The upper left and right panels show the two-visibility correlation V2 (U a;U b) for the same and the adjacent
baselines respectively for OWFA PI. The solid lines show the theoretical predictions obtained using the FSA (eq. 21), the points
correspond to the predictions obtained from the full SH formalism (eqs. 14, 28, 29)and the dot-dashed lines show predictions
obtained using the SH formalism with LA for Bm

ℓ
(U ) (eqs. 18, 28, 29). In the lower panels, we show the percentage deviation

of the FSA (in solid lines) and LA (in dot-dashed lines)predictions relative to the full SH analysis.

smallest baseline(U = 12.5). For the correlations at the adjacent baselines (right panel), we

find that the FSA is in good agreement with the full SH predictions for U > 40 and the

deviation goes upto 14% at the smallest baseline (U = 18.25). Considering the LA, we find

that the results match the full SH analysis at large baselines, the deviations are 6 5% for

U > 60. However, these deviations increase rapidly at smaller baselines and we have ∼ 42%

deviations for the correlation between the two smallest baselines which corresponds to a

mean value of U = 18.25.

Figure 12 shows a similar comparison for OWFA PII. Considering the correlations at

the same baseline (left panel), we find that the FSA is in good agreement with the full SH

predictions over the entire U range and the deviations are less than 10%. Considering the

LA, we find that the results match the full SH analysis at large baselines, the deviations are

6 5% for U > 60. However, these deviations increase rapidly at smaller baselines and we

have more than 200% deviations at the smallest baseline (U = 2.1). For the correlations at

the adjacent baselines (right panel), we find that the FSA is in good agreement with the full

SH predictions for U > 60, and the deviation goes upto 16% at the smallest baseline pair

(U = 3.15). Considering the LA, we find that the results match the full SH analysis at large

baselines, the deviations are 6 5% for U > 60. However, these deviations increase rapidly at

smaller baselines and we have ∼ 80% deviations for the smallest baseline pair (U = 3.15).
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Figure 12. The same as Figure 11 for OWFA PII.

7 SUMMARY AND CONCLUSION

The upcoming Ooty Wide Field Array (OWFA; Subrahmanya et al. 2017a) has the detection

of the redshifted 21-cm power spectrum as one of its primary science goals. Earlier works (e.g.

Ali & Bharadwaj 2014) dealing with the signal and foreground predictions for the two modes

(PI and PII) of OWFA have all assumed the FSA. However, OWFA PII has a rather large

FoV (∼ 57◦) in the North-South direction and it is important to incorporate the spherical

nature of the sky. In this paper we investigate the importance of this effect relative to the

earlier FSA. To this end we adopt the SH analysis which relates the measured visibilities to

the SH coefficients of the sky signal through a beam transfer function (Shaw et al. 2014).

Considering a radio interferometer where the baselines are all coplanar with the antenna

aperture (e.g. OWFA, CHIME), we have developed a new formalism to compute the beam

transfer function Bm
ℓ (U ) as an integral of the aperture power pattern ã(U −U

′

) (eq. 14).

In addition to computational advantages, our formalism provides insight into the behaviour

of Bm
ℓ (U ), i.e. the ℓ and m values at which we expect this to peak for a particular baseline

U . For OWFA, we find that Bm
ℓ (U ) is expected to peak at ℓ ≈ 2πU and fall off with

increasing |∆ℓ| with a width ∆ℓ ≈ ±2πd/λ around the peak value. We also provide a closed

form analytical expression for Bm
ℓ (U ) using the LA which is expected to hold at large ℓ or

equivalently at large U . This analytic expression (eq. 18) indicates that Bm
ℓ (U ) is expected

to peak at m = 0 and fall off with increasing m with a width ∆m ≈ ±(2ℓ + 1)λ/b (Figure
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5). It is worth noting that while m takes values in the range −ℓ 6 m 6 ℓ, the sky signal

is restricted to a range −ℓλ/b 6 m 6 ℓλ/b where λ/b ≈ 0.03 for OWFA i.e. OWFA only

responds to 3% of the available m-modes because of the relatively large width b of the

telescope aperture. Figure 6 shows Bm
ℓ (U ) for a few of the baselines. For both PI and PII

we find that the ℓ value where Bm
ℓ (U ) peaks is roughly consistent with the expected values,

for PI the width also is consistent with this. However for PII Bm
ℓ (U ) oscillates to the left

of the peak and has an extended tail to the right of the peak. The LA provides a reasonable

match for PI, particularly at large U . For PII, LA correctly predicts the peak, however, it

does not provide a good match to the behaviour of Bm
ℓ (U ) away from the peak even at

large U .

In the FSA, the two-visibility correlation provides a direct estimate of the redshifted

21-cm power spectrum (Bharadwaj & Sethi 2001; Bharadwaj & Ali 2005). In this paper we

incorporate the spherical sky and express the two-visibility correlation (eq. 28) as a weighted

sum of the multi-frequency angular power spectrum (MAPS; Datta et al. 2007). The weights

here are given by the window functions Wℓ (U a, νi;U b, νj) which are a sum (over m) of

products of the beam transfer function (eq. 29). The signal, for OWFA, is present in the

correlations at the same baseline and the adjacent baselines only (Ali & Bharadwaj 2014).

Figure 7 shows the window function for a few select baselines. We see that the correlation at

baseline Ua pick up the signal corresponding to ℓ ≈ 2πUa whereas the correlation between

the adjacent baselines Ua and Ub corresponds to ℓ ≈ π(Ua + Ub). The LA provides a good

match to the window function at large baselines for PI, however the match (not shown in

the Figure) is not very good for PII.

We have carried out simulations to validate our spherical sky formalism. We find (Figures

9 and 10) that for both PI and PII our analytical predictions are consistent with the results

from the simulations, thereby validating our formalism. Figures 11 and 12 show a comparison

between the predictions of our SH analysis with those from the FSA. The situation where LA

has been used to calculate the beam transfer function is also considered for comparison. We

find that for both PI and PII, the FSA matches the SH predictions to within 16% across the

entire baseline range. As expected, the match is better for PI as compared to PII. The match

is also better for the correlations at the same baseline as compared to the adjacent baselines.

In contrast, the LA provides a good match < 5% only at the large baselines U > 60. In

conclusion, we note that the flat sky approximation matches the full SH analysis to within

15− 16%. It is necessary to use the latter if an accuracy higher than this is required.
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Finally, we note that the entire analysis here is restricted to observations in a single

FoV. This has advantage in allowing detailed foreground modelling of the particular field

which may be useful in foreground removal. In contrast, the “m-mode” analysis proposed

by Shaw et al. (2014) considers drift scan observations which cover a large fraction of the

sky. The latter increases the available signal, this could however make detailed foreground

modelling more difficult. We plan to study m-mode analysis in the context of OWFA in

subsequent work.
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